Neurodegenerative disorders associated with high basal ganglia iron are known by the overarching term of ‘NBIA’ disorders or ‘neurodegeneration with brain iron accumulation’. Discovery of their individual genetic bases was greatly enabled by the collection of DNA and clinical data in just a few centers. With each discovery, the remaining idiopathic disorders could be further stratified by common clinical, radiographic or pathological features to enable the next hunt. This iterative process, along with strong and open collaborations, enabled the discoveries of PANK2, PLA2G6, C19orf12, FA2H, WDR45, and COASY gene mutations as underlying PKAN, PLAN, MPAN, FAHN, BPAN, and CoPAN, respectively. The era of Mendelian disease gene discovery is largely behind us, but the history of these discoveries for the NBIA disorders has not yet been told. A brief history is offered here.
Citations
Citations to this article as recorded by
Metabolic impairments in neurodegeneration with brain iron accumulation Agata Wydrych, Barbara Pakuła, Justyna Janikiewicz, Aneta M. Dobosz, Patrycja Jakubek-Olszewska, Marta Skowrońska, Iwona Kurkowska-Jastrzębska, Maciej Cwyl, Mariola Popielarz, Paolo Pinton, Barbara Zavan, Agnieszka Dobrzyń, Magdalena Lebiedzińska-Arciszew Biochimica et Biophysica Acta (BBA) - Bioenergetics.2025; 1866(1): 149517. CrossRef
Mitochondrial iron deficiency triggers cytosolic iron overload in PKAN hiPS-derived astrocytes Paolo Santambrogio, Anna Cozzi, Chiara Balestrucci, Maddalena Ripamonti, Valeria Berno, Eugenia Cammarota, Andrea Stefano Moro, Sonia Levi Cell Death & Disease.2024;[Epub] CrossRef
Iron Dyshomeostasis in Neurodegeneration with Brain Iron Accumulation (NBIA): Is It the Cause or the Effect? Francesco Agostini, Bibiana Sgalletta, Marco Bisaglia Cells.2024; 13(16): 1376. CrossRef
COASY Protein-Associated Neurodegeneration: Report from India Rohan R. Mahale, Raviprakash Singh, Pavankumar Katragadda, Hansashree Padmanabha Annals of Indian Academy of Neurology.2023; 26(5): 834. CrossRef
Objective To investigate the long-term clinical outcomes of pallidal deep brain stimulation (GPi-DBS) in patients with pantothenate kinase-associated neurodegeneration (PKAN).
Methods We reviewed the records of patients with genetically confirmed PKAN who received bilateral GPi-DBS for refractory dystonia and were clinically followed up for at least 2 years postoperatively at two centers in Korea. Pre- and postoperative Burke– Fahn–Marsden Dystonia Rating Scale motor subscale (BFMDRS-M) scores, disability subscale (BFMDRS-D) scores, and qualitative clinical information were prospectively collected. Descriptive analysis was performed for BFMDRS-M scores, BFMDRSD scores, and the orofacial, axial, and limb subscores of the BFMDRS-M at 6–12, 24–36, and 60–72 months postoperatively.
Results Five classic-type, four atypical-type, and one unknown-type PKAN cases were identified. The mean preoperative BFMDRS-M score was 92.1 for the classic type and 38.5 for the atypical or unknown type, with a mean BFMDRS follow-up of 50.7 months and a clinical follow-up of 69.0 months. The mean improvements in BFMDRS-M score were 11.3%, 41.3%, and 30.5% at 6–12, 24–36, and 60–72 months, respectively. In four patients with full regular evaluations until 60–72 months, improvements in the orofacial, axial, and limb subscores persisted, but the disability scores worsened from 24–36 months post-operation compared to the baseline, mainly owing to the aggravation of eating and feeding disabilities.
Conclusion The benefits of GPi-DBS on dystonia may persist for more than 5 years in PKAN. The effects on patients’ subjective disability may have a shorter duration despite improvements in dystonia owing to the complex manifestations of PKAN.
Citations
Citations to this article as recorded by
Deep Brain Stimulation for Refractory Status Dystonicus in Children: Multicenter Case Series and Systematic Review Lindsey M. Vogt, Han Yan, Brendan Santyr, Sara Breitbart, Melanie Anderson, Jürgen Germann, Karlo J. Lizarraga, Angela L. Hewitt, Alfonso Fasano, George M. Ibrahim, Carolina Gorodetsky Annals of Neurology.2024; 95(1): 156. CrossRef
Illustration of the long-term efficacy of pallidal deep brain stimulation in a patient with PKAN dystonia Luigi M. Romito, Fabiana Colucci, Giovanna Zorzi, Barbara Garavaglia, Ahmet Kaymak, Alberto Mazzoni, Celeste Panteghini, Nico Golfrè Andreasi, Sara Rinaldo, Vincenzo Levi, Miryam Carecchio, Roberto Eleopra Parkinsonism & Related Disorders.2024; 123: 106977. CrossRef
Case of Hallervorden–Spatz Syndrome: A Tale of Twin Sisters Naveen Reddy, Jitender Sharma, Anmol Sharma Neurology India.2024; 72(2): 411. CrossRef
Patient Selection for Deep Brain Stimulation for Pantothenate Kinase-Associated Neurodegeneration Jason L. Chan, Ashley E. Rawls, Joshua K. Wong, Penelope Hogarth, Justin D. Hilliard, Michael S. Okun Tremor and Other Hyperkinetic Movements.2024;[Epub] CrossRef
Imaging Findings of Intracerebral Infection after Deep Brain Stimulation: Pediatric Case Series and Literature Review Andrew Z. Yang, Alexandre Boutet, Vivek Pai, Michael J. Colditz, Artur Vetkas, Brendan Santyr, Nardin Samuel, Jurgen Germann, Sara Breitbart, Lior Elkam, Birgit Ertl‐Wagner, Alfonso Fasano, Andres M. Lozano, George M Ibrahim, Carolina Gorodetsky Movement Disorders Clinical Practice.2024;[Epub] CrossRef
Surgical treatment of movement disorders in neurometabolic conditions Alonso Zea Vera, Andrea L. Gropman Frontiers in Neurology.2023;[Epub] CrossRef