A significant proportion of patients with chorea-acanthocytosis (ChAc) fail to respond to standard therapies. Recent evidence suggests that globus pallidus internus (GPi) deep brain stimulation (DBS) is a promising treatment option; however, reports are few and limited by sample sizes. We conducted a systematic literature review to evaluate the clinical outcome of GPi-DBS for ChAc. PubMed, Embase, and Cochrane Library databases were searched for relevant articles published before August 2021. The improvement of multiple motor and nonmotor symptoms was qualitatively presented. Improvements in the Unified Huntington’s Disease Rating Scale motor score (UHDRS-MS) were also analyzed during different follow-up periods. A multivariate linear regression analysis was conducted to identify potential predictors of clinical outcomes. Twenty articles, including 27 patients, were eligible. Ninety-six percent of patients with oromandibular dystonia reported significant improvement. GPi-DBS significantly improved the UHDRS-motor score at < 6 months (p < 0.001) and ≥ 6 months (p < 0.001). The UHDRS-motor score improvement rate was over 25% in 75% (15/20 cases) of patients at long-term follow-up (≥ 6 months). The multiple linear regression analysis showed that sex, age at onset, course of disease, and preoperative movement score had no linear relationship with motor improvement at long-term follow-up (p > 0.05). GPi-DBS is an effective and safe treatment in most patients with ChAc, but no reliable predictor of efficacy has been found. Oromandibular dystonia-dominant patients might be the best candidates for GPi-DBS.
Citations
Citations to this article as recorded by
Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter Jean-Pascal Lefaucheur, Elena Moro, Yuichiro Shirota, Yoshikazu Ugawa, Talyta Grippe, Robert Chen, David H Benninger, Bahman Jabbari, Sanaz Attaripour, Mark Hallett, Walter Paulus Clinical Neurophysiology.2024; 164: 57. CrossRef
Treatable ataxias are a group of ataxic disorders with specific treatments. These disorders include genetic and metabolic disorders, immune-mediated ataxic disorders, and ataxic disorders associated with infectious and parainfectious etiology, vascular causes, toxins and chemicals, and endocrinopathies. This review provides a comprehensive overview of different treatable ataxias. The major metabolic and genetic treatable ataxic disorders include ataxia with vitamin E deficiency, abetalipoproteinemia, cerebrotendinous xanthomatosis, Niemann-Pick disease type C, autosomal recessive cerebellar ataxia due to coenzyme Q10 deficiency, glucose transporter type 1 deficiency, and episodic ataxia type 2. The treatment of these disorders includes the replacement of deficient cofactors and vitamins, dietary modifications, and other specific treatments. Treatable ataxias with immune-mediated etiologies include gluten ataxia, anti-glutamic acid decarboxylase antibody-associated ataxia, steroid-responsive encephalopathy associated with autoimmune thyroiditis, Miller-Fisher syndrome, multiple sclerosis, and paraneoplastic cerebellar degeneration. Although dietary modification with a gluten-free diet is adequate in gluten ataxia, other autoimmune ataxias are managed by short-course steroids, plasma exchange, or immunomodulation. For autoimmune ataxias secondary to malignancy, treatment of tumor can reduce ataxic symptoms. Chronic alcohol consumption, antiepileptics, anticancer drugs, exposure to insecticides, heavy metals, and recreational drugs are potentially avoidable and treatable causes of ataxia. Infective and parainfectious causes of cerebellar ataxias include acute cerebellitis, postinfectious ataxia, Whipple’s disease, meningoencephalitis, and progressive multifocal leukoencephalopathy. These disorders are treated with steroids and antibiotics. Recognizing treatable disorders is of paramount importance when dealing with ataxias given that early treatment can prevent permanent neurological sequelae.
Citations
Citations to this article as recorded by
Genetic Testing of Movements Disorders: A Review of Clinical Utility Dennis Yeow, Laura I. Rudaks, Sue-Faye Siow, Ryan L. Davis, Kishore R. Kumar Tremor and Other Hyperkinetic Movements.2024;[Epub] CrossRef
Genetically Proven Ataxia With Vitamin E Deficiency With Predominant Cervicobrachial Dystonic Presentation: A Case Report From India Vikram V. Holla, Sandeep Gurram, Sneha D. Kamath, Gautham Arunachal, Nitish Kamble, Ravi Yadav, Pramod Kumar Pal Journal of Movement Disorders.2024; 17(2): 220. CrossRef
Rehabilitation in Ataxia Anupam Gupta, Navin B. Prakash, Hafis Rahman Indian Journal of Physical Medicine and Rehabilitation.2023; 33(1): 21. CrossRef
Objective Putaminal iron deposition is an important feature that helps differentiate multiple system atrophy with predominant parkinsonism (MSA-p) from Parkinson’s disease (PD). Most previous studies used visual inspection or quantitative methods with manual manipulation to perform this differentiation. We investigated the value of a new semiautomated diagnostic algorithm using 3T-MR susceptibility-weighted imaging for MSA-p.
Methods This study included 26 MSA-p, 68 PD, and 41 normal control (NC) subjects. The algorithm was developed in 2 steps: 1) determine the image containing the remarkable putaminal margin and 2) calculate the phase-shift values, which reflect the iron concentration. The next step was to identify the best differentiating conditions among several combinations. The highest phaseshift value of each subject was used to assess the most effective diagnostic set.
Results The raw phase-shift values were present along the lateral margin of the putamen in each group. It demonstrates an anterior- to-posterior gradient that was identified most frequently in MSA-p. The average of anterior 5 phase shift values were used for normalization. The highest area under the receiver operating characteristic curve (0.874, 80.8% sensitivity, and 86.7% specificity) of MSA-p versus PD was obtained under the combination of 3 or 4 vertical pixels and one dominant side when the normalization methods were applied. In the subanalysis for the MSA-p patients with a longer disease duration, the performance of the algorithm improved.
Conclusion This algorithm detected the putaminal lateral margin well, provided insight into the iron distribution of the putaminal rim of MSA-p, and demonstrated good performance in differentiating MSA-p from PD.
Objective To investigate the long-term clinical outcomes of pallidal deep brain stimulation (GPi-DBS) in patients with pantothenate kinase-associated neurodegeneration (PKAN).
Methods We reviewed the records of patients with genetically confirmed PKAN who received bilateral GPi-DBS for refractory dystonia and were clinically followed up for at least 2 years postoperatively at two centers in Korea. Pre- and postoperative Burke– Fahn–Marsden Dystonia Rating Scale motor subscale (BFMDRS-M) scores, disability subscale (BFMDRS-D) scores, and qualitative clinical information were prospectively collected. Descriptive analysis was performed for BFMDRS-M scores, BFMDRSD scores, and the orofacial, axial, and limb subscores of the BFMDRS-M at 6–12, 24–36, and 60–72 months postoperatively.
Results Five classic-type, four atypical-type, and one unknown-type PKAN cases were identified. The mean preoperative BFMDRS-M score was 92.1 for the classic type and 38.5 for the atypical or unknown type, with a mean BFMDRS follow-up of 50.7 months and a clinical follow-up of 69.0 months. The mean improvements in BFMDRS-M score were 11.3%, 41.3%, and 30.5% at 6–12, 24–36, and 60–72 months, respectively. In four patients with full regular evaluations until 60–72 months, improvements in the orofacial, axial, and limb subscores persisted, but the disability scores worsened from 24–36 months post-operation compared to the baseline, mainly owing to the aggravation of eating and feeding disabilities.
Conclusion The benefits of GPi-DBS on dystonia may persist for more than 5 years in PKAN. The effects on patients’ subjective disability may have a shorter duration despite improvements in dystonia owing to the complex manifestations of PKAN.
Citations
Citations to this article as recorded by
Deep Brain Stimulation for Refractory Status Dystonicus in Children: Multicenter Case Series and Systematic Review Lindsey M. Vogt, Han Yan, Brendan Santyr, Sara Breitbart, Melanie Anderson, Jürgen Germann, Karlo J. Lizarraga, Angela L. Hewitt, Alfonso Fasano, George M. Ibrahim, Carolina Gorodetsky Annals of Neurology.2024; 95(1): 156. CrossRef
Illustration of the long-term efficacy of pallidal deep brain stimulation in a patient with PKAN dystonia Luigi M. Romito, Fabiana Colucci, Giovanna Zorzi, Barbara Garavaglia, Ahmet Kaymak, Alberto Mazzoni, Celeste Panteghini, Nico Golfrè Andreasi, Sara Rinaldo, Vincenzo Levi, Miryam Carecchio, Roberto Eleopra Parkinsonism & Related Disorders.2024; 123: 106977. CrossRef
Case of Hallervorden–Spatz Syndrome: A Tale of Twin Sisters Naveen Reddy, Jitender Sharma, Anmol Sharma Neurology India.2024; 72(2): 411. CrossRef
Surgical treatment of movement disorders in neurometabolic conditions Alonso Zea Vera, Andrea L. Gropman Frontiers in Neurology.2023;[Epub] CrossRef
Objective To investigate whether there is a link between cognitive function and motor reserve (i.e., individual capacity to cope with nigrostriatal dopamine depletion) in patients with newly diagnosed Parkinson’s disease (PD).
Methods A total of 163 patients with drug-naïve PD who underwent 18F-FP-CIT PET, brain MRI, and a detailed neuropsychological test were enrolled. We estimated individual motor reserve based on initial motor deficits and striatal dopamine depletion using a residual model. We performed correlation analyses between motor reserve estimates and cognitive composite scores. Diffusion connectometry analysis was performed to map the white matter fiber tracts, of which fractional anisotropy (FA) values were well correlated with motor reserve estimates. Additionally, Cox regression analysis was used to assess the effect of initial motor reserve on the risk of dementia conversion.
Results The motor reserve estimate was positively correlated with the composite score of the verbal memory function domain (γ = 0.246) and with the years of education (γ = 0.251). Connectometry analysis showed that FA values in the left fornix were positively correlated with the motor reserve estimate, while no fiber tracts were negatively correlated with the motor reserve estimate. Cox regression analysis demonstrated that higher motor reserve estimates tended to be associated with a lower risk of dementia conversion (hazard ratio, 0.781; 95% confidence interval, 0.576–1.058).
Conclusion The present study demonstrated that the motor reserve estimate was well correlated with verbal memory function and with white matter integrity in the left fornix, suggesting a possible link between cognition and motor reserve in patients with PD.
Citations
Citations to this article as recorded by
Hippocampal Perfusion Affects Motor and Cognitive Functions in Parkinson Disease: An Early Phase 18F‐FP‐CIT Positron Emission Tomography Study Min Young Chun, Seok Jong Chung, Su Hong Kim, Chan Wook Park, Seong Ho Jeong, Hye Sun Lee, Phil Hyu Lee, Young H. Sohn, Yong Jeong, Yun Joong Kim Annals of Neurology.2024; 95(2): 388. CrossRef
Imaging Procedure and Clinical Studies of [18F]FP-CIT PET Changhwan Sung, Seung Jun Oh, Jae Seung Kim Nuclear Medicine and Molecular Imaging.2024; 58(4): 185. CrossRef
Influence of cognitive reserve on cognitive and motor function in α-synucleinopathies: A systematic review and multilevel meta-analysis Isaac Saywell, Lauren Foreman, Brittany Child, Alexander L. Phillips-Hughes, Lyndsey Collins-Praino, Irina Baetu Neuroscience & Biobehavioral Reviews.2024; 161: 105672. CrossRef
Structural underpinnings and long-term effects of resilience in Parkinson’s disease Verena Dzialas, Merle C. Hoenig, Stéphane Prange, Gérard N. Bischof, Alexander Drzezga, Thilo van Eimeren npj Parkinson's Disease.2024;[Epub] CrossRef
Considering the response in addition to the challenge – a narrative review in appraisal of a motor reserve framework Daniel Zeller, Shawn Hiew, Thorsten Odorfer, Carine Nguemeni Aging.2024; 16(6): 5772. CrossRef
Defining the concept of reserve in the motor domain: a systematic review Andreina Giustiniani, Angelo Quartarone Frontiers in Neuroscience.2024;[Epub] CrossRef
Extra-Basal Ganglia Brain Structures Are Related to Motor Reserve in Parkinson’s Disease Jinyoung Youn, Ji Hye Won, Mansu Kim, Junmo Kwon, Seung Hwan Moon, Minkyeong Kim, Jong Hyun Ahn, Jun Kyu Mun, Hyunjin Park, Jin Whan Cho Journal of Parkinson's Disease.2023; 13(1): 39. CrossRef
Kah Hui Yap, Nurul Husna Baharudin, Abdul Halim Abdul Gafor, Rabani Remli, Shen-Yang Lim, Wan Asyraf Wan Zaidi, Shahrul Azmin, Shahizon Azura Mohamed Mukari, Raihanah Abdul Khalid, Norlinah Mohamed Ibrahim
J Mov Disord. 2022;15(3):258-263. Published online May 26, 2022
Objective The basal ganglia (BG) are susceptible to fluctuations in blood urea levels, sometimes resulting in movement disorders. We described patients with end-stage kidney disease (ESKD) presenting with movement disorders associated with bilateral BG lesions on imaging.
Methods We report four patients and systematically reviewed all published cases of ESKD presenting with movement disorders and bilateral BG lesions (EBSCOhost and Ovid).
Results Of the 72 patients identified, 55 (76.4%) were on regular dialysis. Parkinsonism was the most common movement disorder (n = 39; 54.2%), followed by chorea (n = 24; 33.3%). Diabetes mellitus (n = 51; 70.8%) and hypertension (n = 16; 22.2%) were the most common risk factors. Forty-three (59.7%) were of Asian ethnicity. Complete clinical resolution was reported in 17 (30.9%) patients, while 38 (69.1%) had incomplete clinical resolution with relapse. Complete radiological resolution occurred in 14 (34.1%) patients.
Conclusion Movement disorders associated with BG lesions should be recognized as a rare and potentially reversible metabolic movement disorder in patients with ESKD.
Objective This study aimed to evaluate whether a larger tissue volume increases the sensitivity of detecting alpha-synuclein (AS) pathology in the gastrointestinal (GI) tract.
Methods Nine patients with Parkinson’s disease (PD) or idiopathic rapid eye movement sleep disorder (iRBD) who underwent GI operation and had full-depth intestinal blocks were included. All patients were selected from our previous study population. A total of 10 slides (5 serial sections from the proximal and distal blocks) per patient were analyzed.
Results In previous studies, pathologic evaluation revealed phosphorylated AS (+) in 5/9 patients (55.6%) and in 1/5 controls (20.0%); in this extensive examination, this increased to 8/9 patients (88.9%) but remained the same in controls (20.0%). The severity and distribution of positive findings were similar between patients with iRBD and PD.
Conclusion Examining a large tissue volume increased the sensitivity of detecting AS accumulation in the GI tract.
Citations
Citations to this article as recorded by
Symmetric and Profound Monoaminergic Degeneration in Parkinson’s Disease with Premotor REM Sleep Behavior Disorder Kyung Ah Woo, Han-Joon Kim, Jung Hwan Shin, Kangyoung Cho, Hongyoon Choi, Beomseok Jeon Journal of Parkinson's Disease.2024; 14(4): 823. CrossRef
Mutations in the F-box only protein 7 (FBXO7) gene are the cause of autosomal recessive parkinsonian-pyramidal syndrome. Herein, we report a patient with a novel FBXO7 mutation with a unique clinical presentation. A 43-year-old male visited our hospital with complaints of progressing gait disturbance since a generalized tonic clonic seizure. There were no past neurological symptoms or familial disorders. Neurological examination revealed bradykinesia, masked face, stooped posture, parkinsonian gait, and postural instability. The bilateral uptake by dopamine transporters was nearly abolished, as determined by N-(3-[18F]fluoropropyl)- 2β-carbon ethoxy-3β-(4-iodophenyl) nortropane positron emission tomography (18F-FP-CIT PET). Next-generation sequencing revealed a heterozygous c.1066_1069delTCTG (p.Ser356ArgfsTer56) frameshift variant and a heterozygous c.80G>A (p.Arg27His) missense variant of the FBXO7 gene. The patient’s specific clinical features, medication-refractory parkinsonism and seizures further broaden the spectrum of FBXO7 mutations. The nearly abolished dopamine transporter uptake identified by 18F-FP-CIT PET is frequently found in patients with FBXO7 mutations, which is different from the usual rostrocaudal gradient that is observed in patients with Parkinson’s disease.
Citations
Citations to this article as recorded by
Imaging Procedure and Clinical Studies of [18F]FP-CIT PET Changhwan Sung, Seung Jun Oh, Jae Seung Kim Nuclear Medicine and Molecular Imaging.2024; 58(4): 185. CrossRef
Study of an FBXO7 patient mutation reveals Fbxo7 and PI31 co‐regulate proteasomes and mitochondria Sara Al Rawi, Lorna Simpson, Guðrún Agnarsdóttir, Neil Q. McDonald, Veronika Chernuha, Orly Elpeleg, Massimo Zeviani, Roger A. Barker, Ronen Spiegel, Heike Laman The FEBS Journal.2024; 291(12): 2565. CrossRef
The characteristics of FBXO7 and its role in human diseases Yeling Zhong, Jinyun Li, Meng Ye, Xiaofeng Jin Gene.2023; 851: 146972. CrossRef
Neurologic outcome following liver transplantation for methylmalonic aciduria Diego Martinelli, Giulio Catesini, Benedetta Greco, Alessia Guarnera, Chiara Parrillo, Evelina Maines, Daniela Longo, Antonio Napolitano, Francesca De Nictolis, Sara Cairoli, Daniela Liccardo, Stefania Caviglia, Anna Sidorina, Giorgia Olivieri, Barbara Si Journal of Inherited Metabolic Disease.2023; 46(3): 450. CrossRef
Safety, efficacy, and timing of transplantation(s) in propionic and methylmalonic aciduria Anupam Chakrapani, Jelena Stojanovic, Roshni Vara, Francesca De Nictolis, Marco Spada, Carlo Dionisi‐Vici Journal of Inherited Metabolic Disease.2023; 46(3): 466. CrossRef
Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias Jason S. Gill, Megan X. Nguyen, Mariam Hull, Meike E. van der Heijden, Ken Nguyen, Sruthi P. Thomas, Roy V. Sillitoe Dystonia.2023;[Epub] CrossRef