- Historical and More Common Nongenetic Movement Disorders From Asia
-
Norlinah Mohamed Ibrahim, Priya Jagota, Pramod Kumar Pal, Roongroj Bhidayasiri, Shen-Yang Lim, Yoshikazu Ugawa, Zakiyah Aldaajani, Beomseok Jeon, Shinsuke Fujioka, Jee-Young Lee, Prashanth Lingappa Kukkle, Huifang Shang, Onanong Phokaewvarangkul, Cid Diesta, Cholpon Shambetova, Chin-Hsien Lin
-
J Mov Disord. 2023;16(3):248-260. Published online June 9, 2023
-
DOI: https://doi.org/10.14802/jmd.22224
-
-
2,735
View
-
140
Download
-
1
Web of Science
-
2
Crossref
-
Abstract
PDFSupplementary Material
- Nongenetic movement disorders are common throughout the world. The movement disorders encountered may vary depending on the prevalence of certain disorders across various geographical regions. In this paper, we review historical and more common nongenetic movement disorders in Asia. The underlying causes of these movement disorders are diverse and include, among others, nutritional deficiencies, toxic and metabolic causes, and cultural Latah syndrome, contributed by geographical, economic, and cultural differences across Asia. The industrial revolution in Japan and Korea has led to diseases related to environmental toxin poisoning, such as Minamata disease and β-fluoroethyl acetate-associated cerebellar degeneration, respectively, while religious dietary restriction in the Indian subcontinent has led to infantile tremor syndrome related to vitamin B12 deficiency. In this review, we identify the salient features and key contributing factors in the development of these disorders.
-
Citations
Citations to this article as recorded by
- Diabetic striatopathy and other acute onset de novo movement disorders in hyperglycemia
Subhankar Chatterjee, Ritwik Ghosh, Payel Biswas, Shambaditya Das, Samya Sengupta, Souvik Dubey, Biman Kanti Ray, Alak Pandit, Julián Benito-León, Rana Bhattacharjee Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2024; 18(3): 102997. CrossRef - Tremors in Infantile Tremor Syndrome Mimicking Epilepsia Partialis Continua
Tonyot Gailson, Pradeep Kumar Gunasekaran, Arushi Gahlot Saini, Chaithanya Reddy Journal of Movement Disorders.2024; 17(3): 351. CrossRef
- Nine Hereditary Movement Disorders First Described in Asia: Their History and Evolution
-
Priya Jagota, Yoshikazu Ugawa, Zakiyah Aldaajani, Norlinah Mohamed Ibrahim, Hiroyuki Ishiura, Yoshiko Nomura, Shoji Tsuji, Cid Diesta, Nobutaka Hattori, Osamu Onodera, Saeed Bohlega, Amir Al-Din, Shen-Yang Lim, Jee-Young Lee, Beomseok Jeon, Pramod Kumar Pal, Huifang Shang, Shinsuke Fujioka, Prashanth Lingappa Kukkle, Onanong Phokaewvarangkul, Chin-Hsien Lin, Cholpon Shambetova, Roongroj Bhidayasiri
-
J Mov Disord. 2023;16(3):231-247. Published online June 13, 2023
-
DOI: https://doi.org/10.14802/jmd.23065
-
-
Abstract
PDFSupplementary Material
- Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
|