Skip Navigation
Skip to contents

JMD : Journal of Movement Disorders

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Kuldeep Shetty 3 Articles
Myoclonus-Ataxia Syndrome Associated with COVID-19
Kuldeep Shetty, Atul Manchakrao Jadhav, Ranjith Jayanthakumar, Seema Jamwal, Tejaswini Shanubhogue, Mallepalli Prabhakar Reddy, Gopal Krishna Dash, Radhika Manohar, Vivek Jacob Philip, Vikram Huded
J Mov Disord. 2021;14(2):153-156.   Published online April 6, 2021
DOI: https://doi.org/10.14802/jmd.20106
  • 7,122 View
  • 186 Download
  • 9 Web of Science
  • 8 Crossref
AbstractAbstract PDFSupplementary Material
Neurological manifestations of coronavirus disease (COVID-19) have increasingly been reported since the onset of the pandemic. Herein, we report a relatively new presentation. A patient in the convalescence period following a febrile illness with lower respiratory tract infection (fever, myalgia, nonproductive cough) presented with generalized disabling myoclonus, which is phenotypically suggestive of brainstem origin, along with additional truncal cerebellar ataxia. His neurology work-ups, such as brain MRI, electroencephalography, serum autoimmune and paraneoplastic antibody testing, were normal. His CT chest scan revealed right lower lung infiltrates, and serological and other laboratory testing did not show evidence of active infection. COVID-19 titers turned out to be strongly positive, suggestive of post-COVID-19 lung sequelae. He responded partially to antimyoclonic drugs and fully to a course of steroids, suggesting a para- or postinfectious immune-mediated pathophysiology. Myoclonusataxia syndrome appears to be a neurological manifestation of COVID-19 infection, and knowledge regarding this phenomenon should be increased among clinicians for better patient care in a pandemic situation.

Citations

Citations to this article as recorded by  
  • Opsoclonus Myoclonus Ataxia Syndrome Due to SARS-CoV-2
    Josef Finsterer, Fulvio A. Scorza
    Neuro-Ophthalmology.2023; 47(1): 1.     CrossRef
  • Myoclonus in patients with COVID‐19: Findings of autoantibodies against brain structures in cerebrospinal fluid
    Isa Lindqvist, Janet L. Cunningham, Jan Mulder, Amalia Feresiadou, Elham Rostami, Johan Virhammar, Eva Kumlien
    European Journal of Neurology.2023; 30(10): 3142.     CrossRef
  • Temporal Changes in Brain Perfusion in a Patient with Myoclonus and Ataxia Syndrome Associated with COVID-19
    Kenta Osawa, Atsuhiko Sugiyama, Akiyuki Uzawa, Shigeki Hirano, Tatsuya Yamamoto, Masahiko Nezu, Nobuyuki Araki, Hiroki Kano, Satoshi Kuwabara
    Internal Medicine.2022; 61(7): 1071.     CrossRef
  • Post‐infectious cerebellar ataxia following COVID‐19 in a patient with epilepsy
    Sidhartha Chattopadhyay, Judhajit Sengupta, Sagar Basu
    Clinical and Experimental Neuroimmunology.2022; 13(4): 323.     CrossRef
  • Persistent neurological manifestations in long COVID-19 syndrome: A systematic review and meta-analysis
    Rizaldy Taslim Pinzon, Vincent Ongko Wijaya, Abraham Al Jody, Patrick Nalla Nunsio, Ranbebasa Bijak Buana
    Journal of Infection and Public Health.2022; 15(8): 856.     CrossRef
  • Anti-neuronal antibodies against brainstem antigens are associated with COVID-19
    Guglielmo Lucchese, Antje Vogelgesang, Fabian Boesl, Dina Raafat, Silva Holtfreter, Barbara M. Bröker, Angela Stufano, Robert Fleischmann, Harald Prüss, Christiana Franke, Agnes Flöel
    eBioMedicine.2022; 83: 104211.     CrossRef
  • Post–COVID‐19 Myoclonus–Ataxia Syndrome Responsive to Intravenous Immunoglobulins
    Massimiliano Godani, Alessandro Beronio, Giuseppe Lanza
    Movement Disorders Clinical Practice.2022;[Epub]     CrossRef
  • Anti-GAD associated post-infectious cerebellitis after COVID-19 infection
    Ahmed Serkan Emekli, Asuman Parlak, Nejla Yılmaz Göcen, Murat Kürtüncü
    Neurological Sciences.2021; 42(10): 3995.     CrossRef
Recurrent ADCY5 Mutation in Mosaic Form with Nocturnal Paroxysmal Dyskinesias and Video Electroencephalography Documentation of Dramatic Response to Caffeine Treatment
Kuldeep Shetty, Asodu Sandeep Sarma, Meera Devan, Ashwin Dalal, Gopal Krishna Dash, Apuroopa Jannabhatla, Siddaramappa Jagadish Patil
J Mov Disord. 2020;13(3):238-240.   Published online July 28, 2020
DOI: https://doi.org/10.14802/jmd.20014
  • 5,590 View
  • 131 Download
  • 9 Web of Science
  • 10 Crossref
PDFSupplementary Material

Citations

Citations to this article as recorded by  
  • Scoping Review onADCY5‐Related Movement Disorders
    Poornima Jayadev Menon, Christelle Nilles, Laura Silveira‐Moriyama, Ruiyi Yuan, Claudio M. de Gusmao, Alexander Münchau, Miryam Carecchio, Steve Grossman, Gay Grossman, Aurélie Méneret, Emmanuel Roze, Tamara Pringsheim
    Movement Disorders Clinical Practice.2023; 10(7): 1048.     CrossRef
  • Awakening‐Related Bouts of Severe Opisthotonos in GNAO1
    Alonso Zea Vera, Marc DiSabella, Laura Tochen, Meira Meltzer, Andrea Gropman
    Movement Disorders Clinical Practice.2023; 10(11): 1698.     CrossRef
  • Case report: Diagnosis of ADCY5-related dyskinesia explaining the entire phenotype in a patient with atypical citrullinemia type I
    Audrey Pontrucher, Magalie Barth, Alban Ziegler, Juan Manuel Chao de la Barca, Delphine Mirebeau-Prunier, Pascal Reynier, Chadi Homedan
    Frontiers in Neurology.2023;[Epub]     CrossRef
  • ADCY5 Mutation-Movement Disorder with Sleep Disruption Improving with Caffeine
    NeeluA Desai, DavidA Manchala, NehaI Patki
    Neurology India.2022; 70(5): 2211.     CrossRef
  • Caenorhabditis elegans provides an efficient drug screening platform for GNAO1-related disorders and highlights the potential role of caffeine in controlling dyskinesia
    Martina Di Rocco, Serena Galosi, Enrico Lanza, Federica Tosato, Davide Caprini, Viola Folli, Jennifer Friedman, Gianfranco Bocchinfuso, Alberto Martire, Elia Di Schiavi, Vincenzo Leuzzi, Simone Martinelli
    Human Molecular Genetics.2022; 31(6): 929.     CrossRef
  • Efficacy of Caffeine in ADCY5‐Related Dyskinesia: A Retrospective Study
    Aurélie Méneret, Shekeeb S. Mohammad, Laura Cif, Diane Doummar, Claudio DeGusmao, Mathieu Anheim, Magalie Barth, Philippe Damier, Nathalie Demonceau, Jennifer Friedman, Cécile Gallea, Domitille Gras, Juliana Gurgel‐Giannetti, Emily A. Innes, Ján Necpál, F
    Movement Disorders.2022; 37(6): 1294.     CrossRef
  • ADCY5-related dyskinesia: a case report
    Shih-Ying Chen, Chen-Jui Ho, Yan-Ting Lu, Chih-Hsiang Lin, Meng-Han Tsai
    Neurological Research and Practice.2022;[Epub]     CrossRef
  • ADCY5-Related Dyskinesia in a Child with Sleep Related Paroxysmal Dyskinesia
    Vikram V Holla, Koti Neeraja, Shweta Prasad, Nitish Kamble, Pramod Kumar Pal
    The Indian Journal of Pediatrics.2021; 88(3): 308.     CrossRef
  • Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders
    Cécile Delorme, Camille Giron, David Bendetowicz, Aurélie Méneret, Louise-Laure Mariani, Emmanuel Roze
    Expert Review of Neurotherapeutics.2021; 21(1): 81.     CrossRef
  • Treatable Hyperkinetic Movement Disorders Not to Be Missed
    Aurélie Méneret, Béatrice Garcin, Solène Frismand, Annie Lannuzel, Louise-Laure Mariani, Emmanuel Roze
    Frontiers in Neurology.2021;[Epub]     CrossRef
Asymptomatic Hearing Impairment Frequently Occurs in Early-Onset Parkinson’s Disease
Kuldeep Shetty, Syam Krishnan, Jissa Vinoda Thulaseedharan, Manju Mohan, Asha Kishore
J Mov Disord. 2019;12(2):84-90.   Published online April 5, 2019
DOI: https://doi.org/10.14802/jmd.18048
  • 13,070 View
  • 267 Download
  • 18 Web of Science
  • 12 Crossref
AbstractAbstract PDF
Objective
Recent reports of hearing impairment in Parkinson’s disease (PD) have suggested that auditory dysfunction could be a non-motor manifestation of PD. These reports were based on observations of elderly patients for whom presbycusis may, to some extent, have contributed to hearing dysfunction. Therefore, we aimed to explore the auditory functions in younger patients with PD. Methods We conducted a case-control study in a relatively younger (< 55 years of age at study time) population of PD patients and healthy volunteers to test whether auditory dysfunction is a significant non-motor dysfunction in PD. Pure tone audiometry (PTA) and brainstem evoked response audiometry (BERA) were performed in all participants. Results None of the patients or controls reported hearing deficits. Fifty-one patients with PD and 50 healthy volunteers who were age- and gender-matched to the patients participated. PTA-detected hearing impairment was found in 64.7% of patients and 28% of controls (p < 0.001) for both low-mid and/or high frequencies. Hearing impairment was more frequent in the younger subgroups of patients than age-matched controls, while the frequency of hearing impairment was similar in older groups of subjects. BERA was not different between patients and controls. Conclusion Asymptomatic auditory dysfunction is a common non-motor manifestation of early-onset PD and more frequent in younger patients, indicating that it may be independent of aging. The mechanism underlying this dysfunction appears to be peripheral, although a central dysfunction cannot be ruled out based on the findings of this study.

Citations

Citations to this article as recorded by  
  • Peripheral hearing in Parkinson’s disease: a systematic review
    Mariana S. Leme, Seisse G. G. Sanches, Renata M. M. Carvallo
    International Journal of Audiology.2023; 62(9): 805.     CrossRef
  • (Zu-)Hören mit alterndem Gehirn – eine kognitive Herausforderung
    Wilma Großmann
    Laryngo-Rhino-Otologie.2023; 102(S 01): S12.     CrossRef
  • Is Hearing Loss a Risk Factor for Idiopathic Parkinson’s Disease? An English Longitudinal Study of Ageing Analysis
    Megan Rose Readman, Fang Wan, Ian Fairman, Sally A. Linkenauger, Trevor J. Crawford, Christopher J. Plack
    Brain Sciences.2023; 13(8): 1196.     CrossRef
  • Hearing Loss and Disorders: The Repercussions of Climate Change
    Sue Sherratt
    American Journal of Audiology.2023; : 1.     CrossRef
  • Identifying Parkinson Risk Markers in Primary Care—Old Associations and New Insights
    Bhavana Patel, Shannon Chiu, Melissa J. Armstrong
    JAMA Neurology.2022; 79(4): 331.     CrossRef
  • Assessment of Risk Factors and Early Presentations of Parkinson Disease in Primary Care in a Diverse UK Population
    Cristina Simonet, Jonathan Bestwick, Mark Jitlal, Sheena Waters, Aaron Ben-Joseph, Charles R. Marshall, Ruth Dobson, Soha Marrium, John Robson, Benjamin M. Jacobs, Daniel Belete, Andrew J. Lees, Gavin Giovannoni, Jack Cuzick, Anette Schrag, Alastair J. No
    JAMA Neurology.2022; 79(4): 359.     CrossRef
  • Auditory impairment in H‐ABC tubulinopathy
    Alejandra Lopez‐Juarez, Arturo Gonzalez‐Vega, Anke Kleinert‐Altamirano, Valeria Piazza, Angeles Garduno‐Robles, Milvia Alata, Carlos Villaseñor‐Mora, Jose R. Eguibar, Carmen Cortes, Luis Carlos Padierna, Victor H. Hernandez
    Journal of Comparative Neurology.2021; 529(5): 957.     CrossRef
  • The Effect of Parkinson's Disease on Otoacoustic Emissions and Efferent Suppression of Transient Evoked Otoacoustic Emissions
    Evelien De Groote, Annelies Bockstael, Dick Botteldooren, Patrick Santens, Miet De Letter
    Journal of Speech, Language, and Hearing Research.2021; 64(4): 1354.     CrossRef
  • Hearing Loss in Neurological Disorders
    Siyu Li, Cheng Cheng, Ling Lu, Xiaofeng Ma, Xiaoli Zhang, Ao Li, Jie Chen, Xiaoyun Qian, Xia Gao
    Frontiers in Cell and Developmental Biology.2021;[Epub]     CrossRef
  • Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes
    Vasiliki Paplou, Nick M. A. Schubert, Sonja J. Pyott
    Frontiers in Neuroscience.2021;[Epub]     CrossRef
  • Auditory Dysfunction in Parkinson's Disease
    Zahra Jafari, Bryan E. Kolb, Majid H. Mohajerani
    Movement Disorders.2020; 35(4): 537.     CrossRef
  • Future Perspectives on the Relevance of Auditory Markers in Prodromal Parkinson's Disease
    Evelien De Groote, Kim De Keyser, Patrick Santens, Durk Talsma, Annelies Bockstael, Dick Botteldooren, Miet De Letter
    Frontiers in Neurology.2020;[Epub]     CrossRef

JMD : Journal of Movement Disorders