Skip Navigation
Skip to contents

JMD : Journal of Movement Disorders

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
6 "Inflammation"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Letter to the editor
Deep Brain Stimulation in Advanced Parkinson’s Disease: An Uncommon Case of Allergic Encephalitis
Jyun-Yi Chen, Yen-Chung Chen, Shey-Lin Wu
Received November 16, 2023  Accepted April 12, 2024  Published online April 15, 2024  
DOI: https://doi.org/10.14802/jmd.23237    [Accepted]
  • 404 View
  • 10 Download
PDF
Review Article
Multiple System Atrophy: Advances in Diagnosis and Therapy
Hirohisa Watanabe, Sayuri Shima, Yasuaki Mizutani, Akihiro Ueda, Mizuki Ito
J Mov Disord. 2023;16(1):13-21.   Published online December 20, 2022
DOI: https://doi.org/10.14802/jmd.22082
  • 3,795 View
  • 422 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract PDF
This review summarizes improvements in understanding the pathophysiology and early clinical symptoms of multiple system atrophy (MSA) and advancements in diagnostic methods and disease-modifying therapies for the condition. In 2022, the Movement Disorder Society proposed new diagnostic criteria to develop disease-modifying therapies and promote clinical trials of MSA since the second consensus was proposed in 2008. Regarding pathogenesis, cutting-edge findings have accumulated on the interactions of α-synuclein, neuroinflammation, and oligodendroglia with neurons. In neuroimaging, introducing artificial intelligence, machine learning, and deep learning has notably improved diagnostic accuracy and individual analyses. Advancements in treatment have also been achieved, including immunotherapy therapy against α-synuclein and serotonin-targeted and mesenchymal stem cell therapies, which are thought to affect several aspects of the disease, including neuroinflammation. The accelerated progress in clarifying the pathogenesis of MSA over the past few years and the development of diagnostic techniques for detecting early-stage MSA are expected to facilitate the development of disease-modifying therapies for one of the most intractable neurodegenerative diseases.

Citations

Citations to this article as recorded by  
  • A Blinded Evaluation of Brain Morphometry for Differential Diagnosis of Atypical Parkinsonism
    Kazuya Kawabata, Florian Krismer, Beatrice Heim, Anna Hussl, Christoph Mueller, Christoph Scherfler, Elke R. Gizewski, Klaus Seppi, Werner Poewe
    Movement Disorders Clinical Practice.2024; 11(4): 381.     CrossRef
  • The potential of phosphorylated α‐synuclein as a biomarker for the diagnosis and monitoring of multiple system atrophy
    Toufik Abdul‐Rahman, Ranferi Eduardo Herrera‐Calderón, Arjun Ahluwalia, Andrew Awuah Wireko, Tomas Ferreira, Joecelyn Kirani Tan, Maximillian Wolfson, Shankhaneel Ghosh, Viktoriia Horbas, Vandana Garg, Asma Perveen, Marios Papadakis, Ghulam Md Ashraf, Ath
    CNS Neuroscience & Therapeutics.2024;[Epub]     CrossRef
Original Articles
Fecal Calprotectin in Parkinson’s Disease and Multiple System Atrophy
Jia Wei Hor, Shen-Yang Lim, Eng Soon Khor, Kah Kian Chong, Sze Looi Song, Norlinah Mohamed Ibrahim, Cindy Shuan Ju Teh, Chun Wie Chong, Ida Normiha Hilmi, Ai Huey Tan
J Mov Disord. 2022;15(2):106-114.   Published online December 24, 2021
DOI: https://doi.org/10.14802/jmd.21085
  • 5,550 View
  • 345 Download
  • 11 Web of Science
  • 12 Crossref
AbstractAbstract PDFSupplementary Material
Objective
Converging evidence suggests that intestinal inflammation is involved in the pathogenesis of neurodegenerative diseases. Previous studies on fecal calprotectin in Parkinson’s disease (PD) were limited by small sample sizes, and literature regarding intestinal inflammation in multiple system atrophy (MSA) is very scarce. We investigated the levels of fecal calprotectin, a marker of intestinal inflammation, in PD and MSA.
Methods
We recruited 169 subjects (71 PD, 38 MSA, and 60 age-similar nonneurological controls). Clinico-demographic data were collected. PD and MSA were subtyped and the severity assessed using the MDS-UPDRS and UMSARS, respectively. Fecal calprotectin and blood immune markers were analyzed.
Results
Compared to controls (median: 35.7 [IQR: 114.2] μg/g), fecal calprotectin was significantly elevated in PD (median: 95.6 [IQR: 162.1] μg/g, p = 0.003) and even higher in MSA (median: 129.5 [IQR: 373.8] μg/g, p = 0.002). A significant interaction effect with age was observed; between-group differences were significant only in older subjects (i.e., ≥ 61 years) and became more apparent with increasing age. A total of 28.9% of MSA and 18.3% of PD patients had highly abnormal fecal calprotectin levels (≥ 250 μg/g); however, this difference was only significant for MSA compared to controls. Fecal calprotectin correlated moderately with selected blood immune markers in PD, but not with clinical features of PD or MSA.
Conclusions
Elevated fecal calprotectin suggests a role for intestinal inflammation in PD and MSA. A more complete understanding of gut immune alterations could open up new avenues of research and treatment for these debilitating diseases.

Citations

Citations to this article as recorded by  
  • Calprotectin in Parkinsonian disease: Anticipation and dedication
    Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Ayah Talal Zaidalkiani, Athanasios Alexiou, Marios Papadakis, Mostafa M. Bahaa, Ammar AL-Faraga, Gaber El-Saber Batiha
    Ageing Research Reviews.2024; 93: 102143.     CrossRef
  • Diagnostic Accuracy of Fecal Calprotectin in Discriminating Organic-Inflammatory Gastrointestinal Diseases and Functional Gastrointestinal Disorders in Older Patients
    Antonella Gallo, Marcello Covino, Silvia Baroni, Sara Camilli, Francesca Ibba, Silvia Andaloro, Maria Chiara Agnitelli, Fiammetta Maria Rognoni, Francesco Landi, Massimo Montalto
    Journal of Personalized Medicine.2024; 14(3): 227.     CrossRef
  • Nocardia cyriacigeorgica Elicits Gut Disturbances in a Leaky Gut Model of Colitis, but Not the Harmful Cascade Leading to Gut-First Parkinson’s Disease
    João Duarte Magalhães, Emanuel Candeias, Inês Melo-Marques, António E. Abreu, Ana Raquel Pereira-Santos, Ana Raquel Esteves, Sandra Morais Cardoso, Nuno Empadinhas
    International Journal of Molecular Sciences.2024; 25(6): 3423.     CrossRef
  • Inflammation in multiple system atrophy
    Marta Leńska-Mieciek, Natalia Madetko-Alster, Piotr Alster, Leszek Królicki, Urszula Fiszer, Dariusz Koziorowski
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators
    Verena Schmitt, Rebecca Katharina Masanetz, Martin Weidenfeller, Lara Savannah Ebbinghaus, Patrick Süß, Stephan P. Rosshart, Stephan von Hörsten, Friederike Zunke, Jürgen Winkler, Wei Xiang
    Behavioural Brain Research.2023; 452: 114574.     CrossRef
  • Calprotectin, Biomarker of Depression in Patients with Inflammatory Bowel Disease?
    Miorita Melina Iordache, Anca Mihaela Belu, Sabina E. Vlad, Kamer Ainur Aivaz, Andrei Dumitru, Cristina Tocia, Eugen Dumitru
    Medicina.2023; 59(7): 1240.     CrossRef
  • Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson’s disease
    Amica C. Müller-Nedebock, Marieke C. J. Dekker, Matthew J. Farrer, Nobutaka Hattori, Shen-Yang Lim, George D. Mellick, Irena Rektorová, Mohamed Salama, Artur F. S. Schuh, A. Jon Stoessl, Carolyn M. Sue, Ai Huey Tan, Rene L. Vidal, Christine Klein, Soraya
    npj Parkinson's Disease.2023;[Epub]     CrossRef
  • Fecal calprotectin as an intestinal inflammation marker is elevated in glaucoma
    Zuo Wang, Hang Yuan, Xiong Zhu, Jinxia Wang, Wenbo Xiu, Yang Chen, Gao Zhang, Jing Fu, Kun Peng, An Li, Donghua Liu, Xijing Huang, Chong He, Fang Lu
    Biomarkers in Medicine.2023; 17(9): 465.     CrossRef
  • Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson’s Disease
    Kristina Kulcsarova, Corinna Bang, Daniela Berg, Eva Schaeffer
    Journal of Parkinson's Disease.2023; 13(7): 1079.     CrossRef
  • The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic
    Ai Huey Tan, Shen Yang Lim, Anthony E. Lang
    Nature Reviews Neurology.2022; 18(8): 476.     CrossRef
  • The Gut Microbiome–Brain Crosstalk in Neurodegenerative Diseases
    Laura Ghezzi, Claudia Cantoni, Emanuela Rotondo, Daniela Galimberti
    Biomedicines.2022; 10(7): 1486.     CrossRef
  • Gastrointestinal Involvement in Extra-Digestive Disease: Which Is the Role of Fecal Calprotectin?
    Angela Saviano, Marcello Candelli, Christian Zanza, Andrea Piccioni, Alessio Migneco, Veronica Ojetti
    Medicina.2022; 58(10): 1384.     CrossRef
Association of AXIN1 With Parkinson’s Disease in a Taiwanese Population
Hwa-Shin Fang, Chih-Ying Chao, Chun-Chieh Wang, Wen-Lang Fan, Po-Jung Huang, Hon-Chung Fung, Yih-Ru Wu
J Mov Disord. 2022;15(1):33-37.   Published online November 17, 2021
DOI: https://doi.org/10.14802/jmd.21073
  • 4,713 View
  • 269 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material
Objective
A meta-analysis of locus-based genome-wide association studies recently identified a relationship between AXIN1 and Parkinson’s disease (PD). Few studies of Asian populations, however, have reported such a genetic association. The influences of rs13337493, rs758033, and rs2361988, three PD-associated genetic variants of AXIN1, were investigated in the present study because AXIN1 is related to Wnt/β-catenin signaling.
Methods
A total of 2,418 individuals were enrolled in our Taiwanese cohort for analysis of the genotypic and allelic frequency. Polymerase chain reaction–restriction fragment length polymorphism analysis was employed for rs13337493 genotyping, and the Agena MassARRAY platform (Agena Bioscience, San Diego, CA, USA) was used for rs758033 and rs2361988 genotyping in 672 patients with PD and 392 controls. Taiwan Biobank data of another 1,354 healthy controls were subjected to whole-genome sequencing performed using Illumina platforms at approximately 30× average depth.
Results
Our results revealed that rs758033 {odds ratios [OR] (95% confidence interval [CI]) = 0.267 [0.064, 0.795], p = 0.014} was associated with the risk of PD, and there was a trend toward a protective effect of rs2361988 (OR [95% CI] = 0.296 [0.071, 0.884], p = 0.026) under the recessive model. The TT genotype of rs758033 (OR [95% CI] = 0.271 [0.065, 0.805], p = 0.015) and the CC genotype of rs2361988 (OR [95% CI] = 0.305 [0.073, 0.913], p = 0.031) were less common in the PD group than in the non-PD group.
Conclusion
Our findings indicate that the rs758033 and rs2361988 polymorphisms of AXIN1 may affect the risk of PD in the Taiwanese population.

Citations

Citations to this article as recorded by  
  • Disrupted epithelial permeability as a predictor of severe COVID‐19 development
    Duygu Yazici, Eren Cagan, Ge Tan, Manru Li, Evan Do, Ozan C. Kucukkase, Abdurrahman Simsek, Muhammed Ali Kizmaz, Tugce Bozkurt, Tamer Aydin, Anja Heider, Beate Rückert, Marie‐Charlotte Brüggen, Raja Dhir, Liam O'Mahony, Mubeccel Akdis, Kari C. Nadeau, Fer
    Allergy.2023; 78(10): 2644.     CrossRef
Review Articles
Evidence of Inflammation in Parkinson’s Disease and Its Contribution to Synucleinopathy
Thuy Thi Lai, Yun Joong Kim, Hyeo-il Ma, Young Eun Kim
J Mov Disord. 2022;15(1):1-14.   Published online November 3, 2021
DOI: https://doi.org/10.14802/jmd.21078
  • 6,973 View
  • 535 Download
  • 12 Web of Science
  • 12 Crossref
AbstractAbstract PDF
Accumulation of alpha-synuclein (αSyn) protein in neurons is a renowned pathological hallmark of Parkinson’s disease (PD). In addition, accumulating evidence indicates that activated inflammatory responses are involved in the pathogenesis of PD. Thus, achieving a better understanding of the interaction between inflammation and synucleinopathy in relation to the PD process will facilitate the development of promising disease-modifying therapies. In this review, the evidence of inflammation in PD is discussed, and human, animal, and laboratory studies relevant to the relationship between inflammation and αSyn are explored as well as new therapeutic targets associated with this relationship.

Citations

Citations to this article as recorded by  
  • Recent advances of nanomaterials for intervention in Parkinson’s disease in the context of anti-inflammation
    Ruoyu Zhang, Xiaotong Chen, Yuanyuan Cheng, Zixuan Chen, Xiaoqiong Li, Yulin Deng
    Coordination Chemistry Reviews.2024; 502: 215616.     CrossRef
  • Microglial inhibition alleviates alpha-synuclein propagation and neurodegeneration in Parkinson’s disease mouse model
    Thuy Thi Lai, Young Eun Kim, Linh Thi Nhat Nguyen, Tinh Thi Nguyen, In Hee Kwak, Franziska Richter, Yun Joong Kim, Hyeo-il Ma
    npj Parkinson's Disease.2024;[Epub]     CrossRef
  • New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases
    Eveljn Scarian, Camilla Viola, Francesca Dragoni, Rosalinda Di Gerlando, Bartolo Rizzo, Luca Diamanti, Stella Gagliardi, Matteo Bordoni, Orietta Pansarasa
    International Journal of Molecular Sciences.2024; 25(5): 2698.     CrossRef
  • Neuroinflammation following anti-parkinsonian drugs in early Parkinson’s disease: a longitudinal PET study
    Tatsuhiro Terada, Tomoyasu Bunai, Takanori Hashizume, Takashi Matsudaira, Masamichi Yokokura, Hirotsugu Takashima, Takashi Konishi, Tomokazu Obi, Yasuomi Ouchi
    Scientific Reports.2024;[Epub]     CrossRef
  • Neuroinflammation and Immune Dysfunction in the Mechanisms of Development of Parkinson’s Disease
    G. V. Idova, E. L. Alperina, S. Ya. Zhanaeva
    Neuroscience and Behavioral Physiology.2023; 53(9): 1534.     CrossRef
  • Vitamin D3 actions on astrocyte cells: A target for therapeutic strategy in Parkinson’s disease?
    Erlânia Alves de Siqueira, Emanuel Paula Magalhães, Ramon Róseo Paula Pessoa Bezerra de Menezes, Tiago Lima Sampaio, Danya Bandeira Lima, Conceição da Silva Martins, Kelly Rose Tavares Neves, Gerly Anne de Castro Brito, Alice Maria Costa Martins, Glauce S
    Neuroscience Letters.2023; 793: 136997.     CrossRef
  • ASC specks exacerbate α‑synuclein pathology via amplifying NLRP3 inflammasome activities
    Ran Zheng, Yiqun Yan, Shaobing Dai, Yang Ruan, Ying Chen, Chenjun Hu, Zhihao Lin, Naijia Xue, Zhe Song, Yi Liu, Baorong Zhang, Jiali Pu
    Journal of Neuroinflammation.2023;[Epub]     CrossRef
  • NLRP3 Inflammasome-Mediated Neuroinflammation and Related Mitochondrial Impairment in Parkinson’s Disease
    Qiu-Qin Han, Weidong Le
    Neuroscience Bulletin.2023; 39(5): 832.     CrossRef
  • The Role of Ubiquitin–Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease
    Yu Liang, Guangshang Zhong, Mingxin Ren, Tingting Sun, Yangyang Li, Ming Ye, Caiyun Ma, Yu Guo, Changqing Liu
    NeuroMolecular Medicine.2023; 25(4): 471.     CrossRef
  • Anethole attenuates motor dysfunctions, striatal neuronal activity deficiency and blood brain barrier permeability by decreasing striatal α-synuclein and oxidative stress in rotenone-induced Parkinson’s disease of male rats
    Sadegh Moradi Vastegani, Seyed Esmaeil Khoshnam, Samireh Ghafouri, Nima Bakhtiari, Yaghoob Farbood, Alireza Sarkaki, Wesley Lyeverton Correia Ribeiro
    PLOS ONE.2023; 18(11): e0294612.     CrossRef
  • A2A Adenosine Receptor Antagonists: Are Triazolotriazine and Purine Scaffolds Interchangeable?
    Andrea Spinaci, Catia Lambertucci, Michela Buccioni, Diego Dal Ben, Claudia Graiff, Maria Cristina Barbalace, Silvana Hrelia, Cristina Angeloni, Seyed Khosrow Tayebati, Massimo Ubaldi, Alessio Masi, Karl-Norbert Klotz, Rosaria Volpini, Gabriella Marucci
    Molecules.2022; 27(8): 2386.     CrossRef
  • Oligomeropathies, inflammation and prion protein binding
    Gianluigi Forloni, Pietro La Vitola, Claudia Balducci
    Frontiers in Neuroscience.2022;[Epub]     CrossRef
Altered Gut Microbiome and Intestinal Pathology in Parkinson’s Disease
Han-Lin Chiang, Chin-Hsien Lin
J Mov Disord. 2019;12(2):67-83.   Published online May 30, 2019
DOI: https://doi.org/10.14802/jmd.18067
  • 15,766 View
  • 749 Download
  • 63 Web of Science
  • 63 Crossref
AbstractAbstract PDF
Parkinson’s disease (PD) is a common neurodegenerative disorder arising from an interplay between genetic and environmental risk factors. Studies have suggested that the pathological hallmarks of intraneuronal α-synuclein aggregations may start from the olfactory bulb and the enteric nervous system of the gut and later propagate to the brain via the olfactory tract and the vagus nerve. This hypothesis correlates well with clinical symptoms, such as constipation, that may develop up to 20 years before the onset of PD motor symptoms. Recent interest in the gut–brain axis has led to vigorous research into the gastrointestinal pathology and gut microbiota changes in patients with PD. In this review, we provide current clinical and pathological evidence of gut involvement in PD by summarizing the changes in gut microbiota composition and gut inflammation associated with its pathogenesis.

Citations

Citations to this article as recorded by  
  • Buty and the beast: the complex role of butyrate in Parkinson’s disease
    Joshua D. Elford, Nanette Becht, Johan Garssen, Aletta D. Kraneveld, Paula Perez-Pardo
    Frontiers in Pharmacology.2024;[Epub]     CrossRef
  • Adipose tissue, systematic inflammation, and neurodegenerative diseases
    AnaPaula de A. Boleti, PedroHenrique de O. Cardoso, BrenoEmanuel F. Frihling, PatríciaSouza e Silva, LuizFilipe R. N. de Moraes, Ludovico Migliolo
    Neural Regeneration Research.2023; 18(1): 38.     CrossRef
  • Parkinson's Disease: A Multisystem Disorder
    Helena Nunes Costa, Ana Raquel Esteves, Nuno Empadinhas, Sandra Morais Cardoso
    Neuroscience Bulletin.2023; 39(1): 113.     CrossRef
  • Brain modulation by the gut microbiota: From disease to therapy
    Sarmistha Mitra, Raju Dash, Amena Al Nishan, Sarmin Ummey Habiba, Il Soo Moon
    Journal of Advanced Research.2023; 53: 153.     CrossRef
  • Plasma Metabolic Analysis Reveals the Dysregulation of Short-Chain Fatty Acid Metabolism in Parkinson’s Disease
    Ao Qi, Lulu Liu, Junjie Zhang, Simei Chen, Simin Xu, Yusen Chen, Lijiang Zhang, Chun Cai
    Molecular Neurobiology.2023; 60(5): 2619.     CrossRef
  • Fecal microbiota transplantation in Parkinson's disease—A randomized repeat-dose, placebo-controlled clinical pilot study
    Herbert L. DuPont, Jessika Suescun, Zhi-Dong Jiang, Eric L. Brown, Heather T. Essigmann, Ashley S. Alexander, Andrew W. DuPont, Tehseen Iqbal, Netanya S. Utay, Michael Newmark, Mya C. Schiess
    Frontiers in Neurology.2023;[Epub]     CrossRef
  • Mesoporous silica nanoparticles: Their potential as drug delivery carriers and nanoscavengers in Alzheimer's and Parkinson's diseases
    Mohamed S. Attia, Ahmed Yahya, Nada Abdel Monaem, Shereen A. Sabry
    Saudi Pharmaceutical Journal.2023; 31(3): 417.     CrossRef
  • GSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson's disease
    Bingwei Wang, Yan Ma, Sheng Li, Hang Yao, Mingna Gu, Ying Liu, You Xue, Jianhua Ding, Chunmei Ma, Shuo Yang, Gang Hu
    Acta Pharmaceutica Sinica B.2023; 13(6): 2663.     CrossRef
  • Gut-microbiome-brain axis: the crosstalk between the vagus nerve, alpha-synuclein and the brain in Parkinson’s disease
    Júlio César Claudino dos Santos, Leandro Freitas Oliveira, Felipe Micelli Noleto, Camilla Teixeira Pinheiro Gusmão, Gerly Anne de Castro Brito, Glauce Socorro de Barros Viana
    Neural Regeneration Research.2023; 18(12): 2611.     CrossRef
  • Beyond the Microbiota: Understanding the Role of the Enteric Nervous System in Parkinson’s Disease from Mice to Human
    Martina Montanari, Paola Imbriani, Paola Bonsi, Giuseppina Martella, Antonella Peppe
    Biomedicines.2023; 11(6): 1560.     CrossRef
  • Effects of gut microbiota on neurodegenerative diseases
    Saima Khatoon, Nida Kalam, Summya Rashid, Gulnaz Bano
    Frontiers in Aging Neuroscience.2023;[Epub]     CrossRef
  • From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes
    Frances Widjaja, Ivonne M. C. M. Rietjens
    Biomedicines.2023; 11(10): 2658.     CrossRef
  • Association between the risk and severity of Parkinson’s disease and plasma homocysteine, vitamin B12 and folate levels: a systematic review and meta-analysis
    Yuxin Quan, Jisen Xu, Qing Xu, Zhiqing Guo, Ruwei Ou, Huifang Shang, Qianqian Wei
    Frontiers in Aging Neuroscience.2023;[Epub]     CrossRef
  • Oral pathogens exacerbate Parkinson’s disease by promoting Th1 cell infiltration in mice
    Xue-Bing Bai, Shuo Xu, Lu-Jun Zhou, Xiao-Qian Meng, Yu-Lin Li, Yan-Lin Chen, Yi-Han Jiang, Wen-Zhen Lin, Bo-Yan Chen, Lin-Juan Du, Guo-Cai Tian, Yan Liu, Sheng-Zhong Duan, Ya-Qin Zhu
    Microbiome.2023;[Epub]     CrossRef
  • The intestinal luminal sources of α-synuclein: a gastroenterologist perspective
    Aaron Lerner
    Nutrition Reviews.2022; 80(2): 282.     CrossRef
  • Mild Chronic Colitis Triggers Parkinsonism in LRRK2 Mutant Mice Through Activating TNF‐α Pathway
    Chin‐Hsien Lin, Han‐Yi Lin, En‐Pong Ho, Yi‐Ci Ke, Mei‐Fang Cheng, Chyng‐Yann Shiue, Chi‐Han Wu, Peng‐Hsiang Liao, Angela Yu‐Huey Hsu, Li‐An Chu, Ya‐Ding Liu, Ya‐Hui Lin, Yi‐Cheng Tai, Chia‐Tung Shun, Han‐Mo Chiu, Ming‐Shiang Wu
    Movement Disorders.2022; 37(4): 745.     CrossRef
  • Digesting recent findings: gut alpha-synuclein, microbiome changes in Parkinson’s disease
    Ehraz Anis, Aoji Xie, Lena Brundin, Patrik Brundin
    Trends in Endocrinology & Metabolism.2022; 33(2): 147.     CrossRef
  • Animal models of brain-first and body-first Parkinson's disease
    Nathalie Van Den Berge, Ayse Ulusoy
    Neurobiology of Disease.2022; 163: 105599.     CrossRef
  • Microbiome Changes in Humans with Parkinson’s Disease after Photobiomodulation Therapy: A Retrospective Study
    Brian Bicknell, Ann Liebert, Craig S. McLachlan, Hosen Kiat
    Journal of Personalized Medicine.2022; 12(1): 49.     CrossRef
  • Passive Immunization in Alpha-Synuclein Preclinical Animal Models
    Jonas Folke, Nelson Ferreira, Tomasz Brudek, Per Borghammer, Nathalie Van Den Berge
    Biomolecules.2022; 12(2): 168.     CrossRef
  • Dietary Succinoglycan Riclin Improves Glycemia Control in Mice with Type 2 Diabetes
    Zhao Ding, Yang Zhao, Junhao Liu, Wenhao Ge, Xi Xu, Shiming Wang, Jianfa Zhang
    Journal of Agricultural and Food Chemistry.2022; 70(6): 1819.     CrossRef
  • Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling
    Sevag Hamamah, Armin Aghazarian, Anthony Nazaryan, Andras Hajnal, Mihai Covasa
    Biomedicines.2022; 10(2): 436.     CrossRef
  • Distribution of α-Synuclein Aggregation in the Peripheral Tissues
    Yan-yan Li, Tian-tian Zhou, Yi Zhang, Nai-Hong Chen, Yu-He Yuan
    Neurochemical Research.2022; 47(12): 3627.     CrossRef
  • Effects of Subdiaphragmatic Vagotomy in the MPTP-induced Neurotoxicity in the Striatum and Colon of Mice
    Jiajing Shan, Youge Qu, Jiancheng Zhang, Li Ma, Kenji Hashimoto
    Clinical Psychopharmacology and Neuroscience.2022; 20(2): 389.     CrossRef
  • Alpha-Synuclein Strain Variability in Body-First and Brain-First Synucleinopathies
    Mie Kristine Just, Hjalte Gram, Vasileios Theologidis, Poul Henning Jensen, K. Peter R. Nilsson, Mikael Lindgren, Karoline Knudsen, Per Borghammer, Nathalie Van Den Berge
    Frontiers in Aging Neuroscience.2022;[Epub]     CrossRef
  • Urolithins: potential biomarkers of gut dysbiosis and disease stage in Parkinson's patients
    María Romo-Vaquero, Emiliano Fernández-Villalba, Ana-Luisa Gil-Martinez, Lorena Cuenca-Bermejo, Juan Carlos Espín, María Trinidad Herrero, María Victoria Selma
    Food & Function.2022; 13(11): 6306.     CrossRef
  • Short chain fatty acids-producing and mucin-degrading intestinal bacteria predict the progression of early Parkinson’s disease
    Hiroshi Nishiwaki, Mikako Ito, Tomonari Hamaguchi, Tetsuya Maeda, Kenichi Kashihara, Yoshio Tsuboi, Jun Ueyama, Takumi Yoshida, Hiroyuki Hanada, Ichiro Takeuchi, Masahisa Katsuno, Masaaki Hirayama, Kinji Ohno
    npj Parkinson's Disease.2022;[Epub]     CrossRef
  • Opicapone, a Novel Catechol-O-methyl Transferase Inhibitor, for Treatment of Parkinson’s Disease “Off” Episodes
    Amnon A. Berger, Ariel Winnick, Jonathan Izygon, Binil M. Jacob, Jessica S. Kaye, Rachel J. Kaye, Elisa E. Neuchat, Adam M. Kaye, Edward S. Alpaugh, Elyse M. Cornett, Andrew H. Han, Alan D. Kaye
    Health Psychology Research.2022;[Epub]     CrossRef
  • The role of LRRK2 in the periphery: link with Parkinson's disease and inflammatory diseases
    George Tsafaras, Veerle Baekelandt
    Neurobiology of Disease.2022; 172: 105806.     CrossRef
  • What Is the Prognostic Significance of Rapid Eye Movement Sleep Without Atonia in a Polysomnogram?
    Frank Ralls, Lisa Cutchen, Madeleine M. Grigg-Damberger
    Journal of Clinical Neurophysiology.2022; 39(5): 346.     CrossRef
  • Lippia grata essential oil complexed with β-cyclodextrin ameliorates biochemical and behavioral deficits in an animal model of progressive parkinsonism
    Jose Ivo A. Beserra-Filho, Amanda Maria-Macêdo, Suellen Silva-Martins, Ana Cláudia Custódio-Silva, Beatriz Soares-Silva, Sara Pereira Silva, Rafael Herling Lambertucci, Adriano Antunes de Souza Araújo, Angélica Maria Lucchese, Lucindo J. Quintans-Júnior,
    Metabolic Brain Disease.2022; 37(7): 2331.     CrossRef
  • Oral and gut dysbiosis leads to functional alterations in Parkinson’s disease
    Sungyang Jo, Woorim Kang, Yun Su Hwang, Seung Hyun Lee, Kye Won Park, Mi Sun Kim, Hyunna Lee, Hyung Jeong Yoon, Yoo Kyoung Park, Mauricio Chalita, Je Hee Lee, Hojun Sung, Jae-Yun Lee, Jin-Woo Bae, Sun Ju Chung
    npj Parkinson's Disease.2022;[Epub]     CrossRef
  • Deciphering Intertwined Molecular Pathways Underlying Metabolic Syndrome Leading to Parkinson’s Disease
    Ritu Soni, Jigna Shah
    ACS Chemical Neuroscience.2022; 13(15): 2240.     CrossRef
  • Therapeutic potential of short-chain fatty acid production by gut microbiota in neurodegenerative disorders
    Sarika Yadav, Ashish Dwivedi, Anurag Tripathi, Amit Kumar Tripathi
    Nutrition Research.2022; 106: 72.     CrossRef
  • Development of neurodegenerative disorders and the role of gut
    Woong-Woo Lee
    Journal of Geriatric Neurology.2022; 1(2): 53.     CrossRef
  • What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review
    Bruno Bonnechère, Najaf Amin, Cornelia van Duijn
    International Journal of Molecular Sciences.2022; 23(22): 13665.     CrossRef
  • Gut microbiota in dementia with Lewy bodies
    Hiroshi Nishiwaki, Jun Ueyama, Kenichi Kashihara, Mikako Ito, Tomonari Hamaguchi, Tetsuya Maeda, Yoshio Tsuboi, Masahisa Katsuno, Masaaki Hirayama, Kinji Ohno
    npj Parkinson's Disease.2022;[Epub]     CrossRef
  • Gut dysbiosis in stroke and its implications on Alzheimer’s disease‐like cognitive dysfunction
    Justin Cho, You Jeong Park, Bella Gonzales‐Portillo, Madeline Saft, Blaise Cozene, Nadia Sadanandan, Cesar V. Borlongan
    CNS Neuroscience & Therapeutics.2021; 27(5): 505.     CrossRef
  • Plasma Lipopolysaccharide-Binding Protein Reflects Risk and Progression of Parkinson’s Disease
    Szu-Ju Chen, Yu-Chiao Chi, Chang-Han Ho, Wei-Shiung Yang, Chin-Hsien Lin
    Journal of Parkinson's Disease.2021; 11(3): 1129.     CrossRef
  • Parkinson's disease and the gut: Models of an emerging relationship
    Adam J. Bindas, Subhash Kulkarni, Ryan A. Koppes, Abigail N. Koppes
    Acta Biomaterialia.2021; 132: 325.     CrossRef
  • Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats
    Nathalie Van Den Berge, Nelson Ferreira, Trine Werenberg Mikkelsen, Aage Kristian Olsen Alstrup, Gültekin Tamgüney, Páll Karlsson, Astrid Juhl Terkelsen, Jens Randel Nyengaard, Poul Henning Jensen, Per Borghammer
    Brain.2021; 144(6): 1853.     CrossRef
  • Desulfovibrio Bacteria Are Associated With Parkinson’s Disease
    Kari E. Murros, Vy A. Huynh, Timo M. Takala, Per E. J. Saris
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • “Janus-Faced” α-Synuclein: Role in Parkinson’s Disease
    Bipul Ray, Arehally M. Mahalakshmi, Sunanda Tuladhar, Abid Bhat, Asha Srinivasan, Christophe Pellegrino, Anbarasu Kannan, Srinivasa Rao Bolla, Saravana Babu Chidambaram, Meena Kishore Sakharkar
    Frontiers in Cell and Developmental Biology.2021;[Epub]     CrossRef
  • Influence of probiotic bacteria on gut microbiota composition and gut wall function in an in-vitro model in patients with Parkinson's disease
    Jonas Ghyselinck, Lynn Verstrepen, Frédéric Moens, Pieter Van Den Abbeele, Arnout Bruggeman, Jawal Said, Barry Smith, Lynne Ann Barker, Caroline Jordan, Valentina Leta, K. Ray Chaudhuri, Abdul W. Basit, Simon Gaisford
    International Journal of Pharmaceutics: X.2021; 3: 100087.     CrossRef
  • The Role of The Gut Microbiome in Parkinson’s Disease
    Amy Gallop, James Weagley, Saif-ur-Rahman Paracha, George Grossberg
    Journal of Geriatric Psychiatry and Neurology.2021; 34(4): 253.     CrossRef
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease
    Gianfranco Natale, Larisa Ryskalin, Gabriele Morucci, Gloria Lazzeri, Alessandro Frati, Francesco Fornai
    Life.2021; 11(8): 732.     CrossRef
  • Regulation of neurotoxicity in the striatum and colon of MPTP-induced Parkinson’s disease mice by gut microbiome
    Jiajing Shan, Youge Qu, Siming Wang, Yan Wei, Lijia Chang, Li Ma, Kenji Hashimoto
    Brain Research Bulletin.2021; 177: 103.     CrossRef
  • Cholecystectomy and subsequent risk of Parkinson’s disease: a nationwide retrospective cohort study
    Ryul Kim, Jee-Young Lee, Sanghyun Park, Kyungdo Han, Cheol Min Shin
    npj Parkinson's Disease.2021;[Epub]     CrossRef
  • Benefits of Helicobacter pylori Eradication on Extragastric Diseases
    Tae Jun Kim, Hyuk Lee
    The Korean Journal of Helicobacter and Upper Gastrointestinal Research.2021; 21(4): 275.     CrossRef
  • Higher cerebrospinal fluid to plasma ratio of p-cresol sulfate and indoxyl sulfate in patients with Parkinson’s disease
    Bartłomiej Sankowski, Karolina Księżarczyk, Emilia Raćkowska, Stanisław Szlufik, Dariusz Koziorowski, Joanna Giebułtowicz
    Clinica Chimica Acta.2020; 501: 165.     CrossRef
  • The microbiome-gut-brain axis in acute and chronic brain diseases
    Corinne Benakis, Camille Martin-Gallausiaux, Jean-Pierre Trezzi, Philip Melton, Arthur Liesz, Paul Wilmes
    Current Opinion in Neurobiology.2020; 61: 1.     CrossRef
  • The progress of gut microbiome research related to brain disorders
    Sibo Zhu, Yanfeng Jiang, Kelin Xu, Mei Cui, Weimin Ye, Genming Zhao, Li Jin, Xingdong Chen
    Journal of Neuroinflammation.2020;[Epub]     CrossRef
  • Minireview on the Relations between Gut Microflora and Parkinson’s Disease: Further Biochemical (Oxidative Stress), Inflammatory, and Neurological Particularities
    Ovidiu-Dumitru Ilie, Alin Ciobica, Jack McKenna, Bogdan Doroftei, Ioannis Mavroudis, Tuane B. Sampaio
    Oxidative Medicine and Cellular Longevity.2020; 2020: 1.     CrossRef
  • Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications?
    Carolina Pellegrini, Luca Antonioli, Vincenzo Calderone, Rocchina Colucci, Matteo Fornai, Corrado Blandizzi
    Progress in Neurobiology.2020; 191: 101806.     CrossRef
  • Meta‐Analysis of Gut Dysbiosis in Parkinson's Disease
    Hiroshi Nishiwaki, Mikako Ito, Tomohiro Ishida, Tomonari Hamaguchi, Tetsuya Maeda, Kenichi Kashihara, Yoshio Tsuboi, Jun Ueyama, Teppei Shimamura, Hiroshi Mori, Ken Kurokawa, Masahisa Katsuno, Masaaki Hirayama, Kinji Ohno
    Movement Disorders.2020; 35(9): 1626.     CrossRef
  • In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons
    Maria Fouka, Panagiota Mavroeidi, Grigoria Tsaka, Maria Xilouri
    Frontiers in Cell and Developmental Biology.2020;[Epub]     CrossRef
  • Role of Carbon Monoxide in Host–Gut Microbiome Communication
    Christopher P. Hopper, Ladie Kimberly De La Cruz, Kristin V. Lyles, Lauren K. Wareham, Jack A. Gilbert, Zehava Eichenbaum, Marcin Magierowski, Robert K. Poole, Jakob Wollborn, Binghe Wang
    Chemical Reviews.2020; 120(24): 13273.     CrossRef
  • Neurodegeneration and Inflammation—An Interesting Interplay in Parkinson’s Disease
    Chrysoula Marogianni, Maria Sokratous, Efthimios Dardiotis, Georgios M. Hadjigeorgiou, Dimitrios Bogdanos, Georgia Xiromerisiou
    International Journal of Molecular Sciences.2020; 21(22): 8421.     CrossRef
  • Niacin and Butyrate: Nutraceuticals Targeting Dysbiosis and Intestinal Permeability in Parkinson’s Disease
    Tennekoon B. Karunaratne, Chijioke Okereke, Marissa Seamon, Sharad Purohit, Chandramohan Wakade, Amol Sharma
    Nutrients.2020; 13(1): 28.     CrossRef
  • Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson’s Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder
    Hiroshi Nishiwaki, Tomonari Hamaguchi, Mikako Ito, Tomohiro Ishida, Tetsuya Maeda, Kenichi Kashihara, Yoshio Tsuboi, Jun Ueyama, Teppei Shimamura, Hiroshi Mori, Ken Kurokawa, Masahisa Katsuno, Masaaki Hirayama, Kinji Ohno, Chaysavanh Manichanh
    mSystems.2020;[Epub]     CrossRef
  • The Intestinal Barrier in Parkinson’s Disease: Current State of Knowledge
    Sven C. D. van IJzendoorn, Pascal Derkinderen, Teus van Laar
    Journal of Parkinson's Disease.2019; 9(s2): S323.     CrossRef
  • Medical management, prevention and mitigation of environmental risks factors in Neurology
    J. Reis, G.C. Román, M. Giroud, V.S. Palmer, P.S. Spencer
    Revue Neurologique.2019; 175(10): 698.     CrossRef
  • Antibiotic-induced microbiome depletion protects against MPTP-induced dopaminergic neurotoxicity in the brain
    Yaoyu Pu, Lijia Chang, Youge Qu, Siming Wang, Kai Zhang, Kenji Hashimoto
    Aging.2019; 11(17): 6915.     CrossRef

JMD : Journal of Movement Disorders